- an anti-carcinoembryonic antigen monoclonal antibody: a multi-center study. Cancer Res 1989, 49, 3095-3103.
- Colcher D, Milenic D, Roselli M, et al. Characterization and biodistribution of recombinant and recombinant/chimeric constructs of monoclonal antibody B72.3. Cancer Res 1989, 49, 1738–1745.
- Hardman N, Gill LL, De Winter RFJ, et al. Generation of a recombinant mouse-human chimaeric monoclonal antibody directed against human carcinoembryonic antigen. Int J Cancer 1989, 44, 424-433.
- LoBuglio AF, Wheeler RH, Trang J, et al. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc Natl Acad Sci USA 1989, 86, 4220–4224.
- Lloyd KO, Old LJ. Human monoclonal antibodies to glycolipids and other carbohydrate antigens: dissection of the humoral immune response in cancer patients. Cancer Res, 1989, 49, 3445–3451.
- Haspel M, McCabe RP, Pomato N, et al. Generation of tumor cell-reactive human monoclonal antibodies using peripheral blood lymphocytes from actively immunized colorectal carcinoma patients. Cancer Res 1985, 45, 3951–3961.
- Ryan KP, Dillman RO, DeNardo SJ, et al. Breast cancer imaging with In-111 human IgM monoclonal antibodies: preliminary studies. Radiology 1988, 70, 71-75.
- Posner MR, Santos DJ, Elboim HS, Tumber MB, Frackelton AR. Human monoclonal antibodies reactive with human myelomonocytic leukemia cells. Cancer Res 1989, 49, 1665–1670.
- 14. Steis RG, Carrasquillo JA, McCabe R, et al. Toxicity, immunogenicity, and tumor radioimmunodetecting ability of two human monoclonal antibodies in patients with metastatic colorectal carcinoma. *J Clin Oncol* 1990, 8, 476–490.
- Hoover HC, Surdyke MG, Dangel RB, Peters LC, Hanna MG. Prospectively randomized trial of adjuvant active-specific immunotherapy for human colorectal cancer. Cancer 1985, 35, 1236–1243.
- 16. Pomato N, Murray JH, Bos E, Haspel MV, McCabe RP, Hanna

- MG. Identification and characterization of a human colon tumor-associated antigen, CTAA 16.88, recognized by a human monoclonal antibody. In: Metzger R, Mitchell M, eds. *Human Tumor Antigens and Specific Tumor Therapy*. New York, Alan R. Liss, 1989, 127-136.
- 17. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen axcess. *J Immunol Meth* 1984, 72, 77-79.
- 18. Lamki LM, Patt YZ, Rosenblum MG, et al. Metastatic colorectal cancer: radioimmunoscintigraphy with a stabilized In-111-labeled F(ab')₂ fragment of an anti-CEA monoclonal antibody. Radiology 1990, 174, 147-151.
- Chen FM, Taylor CK, Epstein AL. Tumor necrosis treatment of ME-180 human cervical carcinoma model with ¹³¹I-labeled TNT-1 monoclonal antibody. Cancer Res 1989, 49, 4578–4585.
- Chen FM, Epstein AL, Li Z, Taylor CR. A comparative autoradiographic study demonstrating differential intratumor localization of monoclonal antibodies to cell surface (Lym-1) and intracellular (TNT-1) antigens. J Nucl Med 1990, 31, 1059-1066.
- Carasquillo JA, Abrams PG, Schroff RW, et al. Effect of antibody dose on the imaging and biodistribution of indium-111 9.2.27 antimelanoma monoclonal antibody. J Nucl Med 1988, 29, 39-47.
- Kirkwood JM, Neumann RD, Zoghbi SS, et al. Scintigraphic detection of metastatic melanoma using indium 111/DTPA conjugated anti-gp 240 antibody (ZME-018). J Clin Oncol 1987, 5, 1247-1255.
- Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990, 50 (Suppl.), 814s-819s.
- 24. Tait D, McCready R, Ott RJ. HM-PAO assessment of human tumour perfusion. Eur J Cancer Clin Oncol 1987, 23, 789-793.

Acknowledgement—This study was supported by the Praeventiefonds.

Eur J Cancer, Vol. 27, No. 11, pp. 1436-1440, 1991. Printed in Great Britain

0277–5379/91 \$3.00 + 0.00 © 1991 Pergamon Press plc

Increased Levels of Mitochondrial DNA in an Etoposide-resistant Human Monocytic Leukaemia Cell Line (THP-1/E)

Yutaka Tokue, Yasuo Saijo, Ken Satoh and Masakichi Motomiya

Electron microscopic observations of THP-1/E (an etoposide-resistant human monocytic leukaemia cell line) showed a remarkable change of mitochondrial structure. Mitochondria were swollen and cristae were relatively intact. There was no difference in the activity of cytochrome oxidase, an enzyme which contains three subunits coded by mitochondrial DNA (mtDNA) between THP-1/E and THP-1 (the parent cell of THP-1/E). No measurable quantitative change of mitochondrial RNA was observed, but the level of mtDNA in THP-1/E was increased by a factor of about 4 compared with that of mtDNA in THP-1. These results suggest that, on acquisition of resistance to etoposide, some factors affect mitochondria, change its morphology and amplify its DNA.

Eur J Cancer, Vol. 27, No. 11, pp. 1436-1440, 1991.

INTRODUCTION

UNDER PATHOLOGICAL conditions, mitochondria show changes in size, shape and number of cristae [1]. These ultrastructural changes are associated with biochemical alterations as exemplified by defects in the pathway of substrate oxidation and ion transport systems, deficiency in enzyme levels or cytochrome content. Whether the mitochondrial abnormalities are a cause or consequence of a pathological condition cannot always be easily determined.

Mammalian mitochondrial DNA (mtDNA) is a closed circular double-stranded molecule consisting of 16 kilobase pairs. It codes for two ribosomal RNA genes, 22 transfer RNA genes, and 13 protein-coding genes such as cytochrome b, subunits of cytochrome oxidase, ATPase and complex I of the respiratory chain [2, 3]. Unlike nuclear DNA, mtDNA is not in association with histones, and its repair mechanism has not yet been elucidated [4].

We have recently established an etoposide-resistant leukaemia

cell line (THP-1/E) by continuous exposure of THP-1 cells to etoposide [5]. Prior reports have indicated that mtDNA may be an important target of several known mutagens, carcinogens and antineoplastic agents [6–10] as evidenced by frequent alterations of mitochondria in carcinoma cells [11]. To the authors' knowledge, however, few papers have been published which have dealt with mitochondrial changes in cells which are resistant to antineoplastic agents [12]. Therefore, we have studied morphology and enzyme activity and have quantitated RNA and DNA in mitochondria of this etoposide-resistant cell line.

MATERIALS AND METHODS

Cells

THP-1 human monocytic leukaemia cells [13] were maintained in suspension culture in RPMI-1640 medium supplemented with 10% heat-inactivated fetal calf serum. An etoposide-resistant subline (THP-1/E) was established from THP-1 human monocytic leukaemia cells by subculture in stepwise increasing concentrations of etoposide [5]. All cells were maintained at 37°C in a 5% CO₂ atmosphere.

Electron microscopy

For ultrastructural studies, 10⁷ cells were washed twice with 0.1 mol/l sodium cacodylate buffer (pH 7.2), fixed with 2.5% glutaraldehyde in 0.1 mol/l sodium cacodylate buffer (pH 7.2) for 1 h at 4°C, and postfixed in 1% OsO₄ in the same buffer for 1 h. Dehydration in graded concentrations of ethanol and propylene oxide and Epon embedding were performed by the conventional method. Thin sections were stained with both uranyl acetate and lead citrate, and examined in a Hitachi H-600 electron microscope at 75 KV.

Determination of cytochrome oxidase activity

Cultured cells were centrifuged, washed twice with 0.25 mol/l sucrose in 10 mmol/l Tris-HCl (pH 7.4) and resuspended in the same buffer. The cell suspension was homogenised in a Dounce homogeniser, and the homogenate thus prepared used as the crude enzyme. The cytochrome oxidase was measured in an incubation medium consisting of 0.2 ml 0.1 mol/l potassium phosphate buffer (pH 7.0) and 0.14 ml of 1% ferrocytochrome c (type III, Sigma). A blank cuvette was oxidised with 0.02 ml 0.1 mol/l potassium ferricyanide. Absorbance at 550 nm was read for 5 min.

The concentration of protein was determined by the method of Bradford using bovine serum albumin as a standard [14].

Preparation of RNA and northern blot analysis

RNA was extracted by the guanidine isothiocyanate/cesium chloride method [15]. RNA was separated by electrophoresis in a 1% agarose gel containing 2 mol/l formaldehyde and was transferred to a nitrocellulose membrane. Dot blots were carried out using a Minifold (Schleicher & Schuell). A 4.8 kb fragment of mtDNA, after digestion with *EcoR* I, was used as a probe. Hybridisation and washing were carried out as described previously [15].

Isolation of DNA and Southern blot analysis

High molecular weight DNA was extracted from THP-1 or THP-1/E cells as described previously [15]. DNA was digested

Correspondence to Y. Tokue.

The authors are at the Department of Internal Medicine, The Research Institute for Tuberculosis and Cancer, Tohoku University, 4-1, Seiryoucho, Sendai, 980, Japan.

Revised 16 Apr. 1991; accepted 16 May 1991.

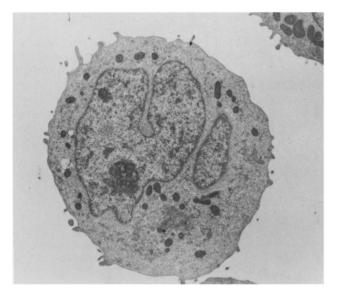


Fig. 1. Ultrastructure of a THP-1 cell: it has a deep-folded nuclei with well-defined nucleolus and the mitochondria are characterized by smooth, ovoid contours and regularly-spaced cristae. The density of mitochondrial matrix exceeds that of the surrounding cytoplasm (× 5000).

for 4 h with EcoR I. The sample digested as above was electrophoresed on an 0.8% agarose gel and transferred to a nitrocellulose membrane by the method of Southern [16]. Prehybridisation was done for 6 h at 65°C in a solution containing 5 × sodium saline citrate, 5 × Denhardt's solution, 0.1% sodium dodecyl sulphate, salmon sperm DNA (0.25 mg/ml) and 50% formamide. Hybridisation with the 32 P-labelled probe (10^{7} cpm) was carried out overnight at 65°C in 10 ml of the prehybridisation mixture.

Probes

Bovine mtDNA [2] has about 70% homology in sequence with human mtDNA [3], and can be used as a sensitive and specific probe for hybridisation to human mtDNA. Circular mtDNA was isolated from bovine liver as described by Backer and Weinstein [7]. The bovine mtDNA was digested with EcoR I and 7.3 kb, 4.8 kb and 4.2 kb fragments were obtained, purified on agarose gel and labelled with [^{32}P]-dCTP. A cDNA containing the complete human α_1 -antitrypsin sequence was used as a nuclear DNA probe [17].

RESULTS

Electron microscopy

The nuclei of THP-1 cells had deep folds and a well-defined nucleolus. Mitochondria had smooth, ovoid contours and regularly-spaced cristae spanning the entire width of the organellae. The density of the mitochondrial matrix exceeded that of the surrounding cytoplasm (Fig. 1).

In THP-1/E cells, most mitochondria were enlarged and swollen, and cristae were relatively intact in the low-density mitochondrial matrix (Fig. 2). Such changes were still evident even after 2-month culture of THP-1/E cells in etoposide-free medium.

Cytochrome oxidase

We measured the activity of cytochrome oxidase which contained three subunits coded by mtDNA, as shown in Fig. 3. The activity of cytochrome oxidase in THP-1 was 36.1 (S.D.

1438 Y. Tokue et al.

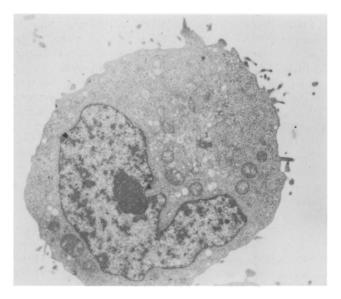


Fig. 2. Ultrastructure of a THP-1/E cell. Most of the mitochondria are enlarged and swollen, and cristae are relatively intact in a low density mitochondrial matrix (× 5000).

13.0) and that in THP-1/E 34.1 (11.3) nmol/min/mg protein, respectively. No significant difference was observed between the two cell lines.

Northern blot and dot blot analysis of mRNA

Figure 4a shows the results of northern blot analysis. Equal amounts ($10 \mu g$) of total RNA from THP-1 and THP-1/E cells were electrophoresed. MtDNA isolated from bovine liver was digested with EcoR I and a 4.8 kb fragment was used as a probe. Two major bands (mRNA species of 1.7 kb and 0.7 kb) were detected both in THP-1 and THP-1/E cell lines. No difference in size of mRNA species was observed between the two cell lines.

Figure 4b shows the results of dot blot analysis which was carried out with a 2-fold dilution series. DNA probe was the same as that used for northern blot. No quantitative change was observed between the two cell lines.

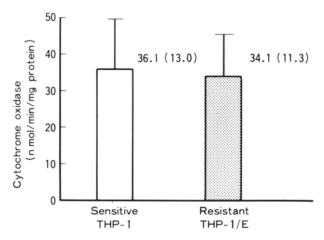


Fig. 3. Activity of cytochrome oxidase in THP-1 and THP-1/E cell lines. Seven independent determinations of THP-1 and THP-1/E were made. No significant difference was observed between these two cell lines. Mean (S.D.).

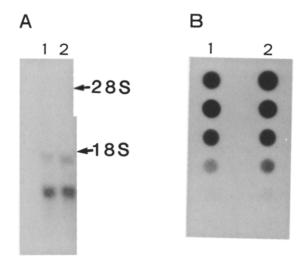


Fig. 4. (A) Northern blot analysis of RNA. Arrows indicate the position of 28S and 18S rRNA in this gel. (B) Dot blot analysis was carried out with a 2-fold dilution series. The same probe as that used for northern blots was used. Lane 1, THP-1/E; 2, THP-1.

Southern blot analysis

Total cellular DNA extracted from THP-1 or THP-1/E cells was digested with EcoR I, which cleaves human mtDNA at three different sites. Equal amounts (10 μg) of total DNA were electrophoresed. Southern hybridisation was performed, using as probes radio labelled 16.3 kb bovine mtDNA (7.3 + 4.8 + 4.2 kb) or complete human α_1 -antitrypsin sequence (Fig. 5). A single major band of 10 kb for α_1 -antitrypsin DNA was detected in both THP-1 and THP-1/E cell lines. The two cell lines exhibited similar levels of hybridisation. In contrast, more mtDNA hybridised with DNA from THP-1/E than with that from THP-1 cell lines. Densitometric analysis of autoradiograms

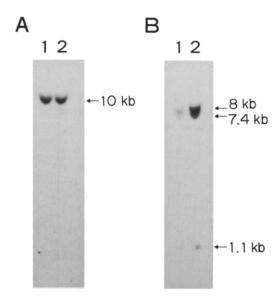


Fig. 5. Southern blot analysis of α_1 -antitrypsin and mtDNA. (A) The membrane was hybridised with radiolabelled complete human α_1 -antitrypsin sequence. A single major band of 10 kb was detected in both THP-1 and THP-1/E cells. Two lanes exhibited similar levels of hybridisation. (B) The membrane was hybridised with radiolabelled bovine mtDNA probe. Three bands (8 kb, 7.4 kb and 1.1 kb) were detected in two cell lines, but the level of mtDNA in THP-1/E was increased by a factor of about 4 as compared with that of mtDNA in THP-1. Lane 1, THP-1; 2, THP-1/E.

(three independent determinations) indicated a difference of a factor of 3.97 (0.66) in the level of hybridisation between THP-1/E and THP-1 cell-lines (data not shown). Three bands (8 kb, 7.4 kb and 1.1 kb fragments) were detected, but no difference in their sizes was observed between the above two cell lines.

DISCUSSION

Ultrastructural studies of THP-1/E, an etoposide-resistant human monocytic leukaemia cell line, revealed changes of mitochondrial structure which were irreversible even after removal of etoposide. Similar changes in mitochondria have also been observed after treatment with ethidium bromide or cloramphenicol [18]. With the latter two reagents, however, the structural changes such as swelling and loss of cristae were reversible after removal of the drug. After treatment with ethidium bromide or chloramphenicol, the activity of cytochrome oxidase was decreased to a level of about one half the control value. Ditercalinium, a bifunctional intercalating molecular with antitumour activity, also causes swelling and loss of cristae in mitochondria. After treatment with ditercalinium, cytochrome oxidase activity decreased exponentially, and mtDNA became lost in the absence of detectable nuclear DNA alterations [10]. In contrast, our study found no difference in the activity of cytochrome oxidase between THP-1 and THP-

Tapiero et al. [12] have reported that Friend leukaemia cells resistant to doxorubicin are crossresistant to rhodamine 123. When cells resistant to doxorubicin were treated with rhodamine 123, mitochondria remained intact. However, when the doxorubicin-resistant cells were treated with verapamil plus rhodamine 123, the intracellular levels of rhodamine 123 increased, mitochondria became swollen and cristae became disorganised.

Our previous studies on drug uptake and efflux revealed no difference between THP-1 and THP-1/E in either kinetics or steady-state level of etoposide. There was no difference in the effect of verapamil on cellular uptake of etoposide between the above two cell lines [19]. These observations suggest that the mechanism of resistance to etoposide in THP-1/E may be different from that of resistance of Friend leukaemia cells to doxorubicin.

The mechanism of action of etoposide appears to involve production of single-strand and double-strand breaks in DNA [20–22]. The etoposide-induced DNA cleavage is caused by an interaction of etoposide with topoisomerase II [23]. However, controversy still exists as to the mechanism of resistance to etoposide, presumably because the cell lines used and the patterns of crossresistance were different from experiment to experiment. Thus reduced drug accumulation or altered membrane permeability has been observed in the resistant cell lines of mouse tumour [24], while no decrease or minimal change has been reported in drug-resistant Chinese hamster cells [25] and in a multidrug-resistant human tumour cell line [26]. To the authors' knowledge, few papers have been published which have dealt with a relationship between mitochondria and etoposide resistance.

On the other hand, amplification of a number of genes has been reported in somatic mammalian cells, including amplification of the dihydrofolate reductase (DHFR) gene in association with the acquisition of resistance to methotrexate [27, 28]. Overproduction of DHFR, the target protein of methotrexate, is the result of dose-related amplification of the DHFR gene. Glaichenhaus et al. [29] observed that the levels of mitochondrial gene

expression increased in rat fibroblast cells immortalised or transformed by viral and cellular oncogenes. Changes in the expression of the mitochondrial genome did not appear to result from the difference in the number of mtDNA molecules per cell. Heerdt et al. [30] reported that the level of expression of cytochrome oxidase subunit 3 decreased in colon adenomas and carcinomas in comparison with that of normal mucosa and returned to higher levels when the colonic adenocarcinoma cell line was induced to differentiate with sodium butyrate. These changes were not associated with alterations in the number of mtDNA. In the reports of Glaichenhaus et al. and Heerdt et al!, increased gene expression was the major change and the level of DNA remained unchanged.

The data presented in this report demonstrate that in THP-1/E cell lines amplification of mtDNA is a major change which may not necessarily parallel the levels of mRNA or enzyme activity. It is possible in THP-1/E cells that transcription from mtDNA is inhibited by continuous exposure to etoposide and/or that the changes of displacement-loop region of mtDNA, which has evolved as a control site for both replication and transcription, induce amplification of mtDNA, but leave the rate of transcription unchanged. Another possibility is a change of turnover rate of mRNA. Despite an increased production of RNA, the level of mRNA may not change due to a faster rate of RNA degradation. However, it is also possible that amplification of mtDNA is the result of defensive reaction of cells placed under disadvantage. Whether such mitochondrial changes are a cause or a consequence of acquisition of resistance to etoposide remains to be solved.

- Carafoli E, Roman I. Mitochondria and disease. Mol Aspects Med 1980, 3, 295-429.
- Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial gene. J Mol Biol 1982, 156, 683-717.
- Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457-465.
- Clayton DA, Doda JN, Friedberg EC. The absence of pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 1974, 71, 2777-2781.
- Saijo Y, Kumano N, Suzuki S, et al. Establishment of an etoposide(VP-16)-resistant subline of THP-1 human monocytic leukemia cell line. Tohoku J Exp Med 1989, 157, 215-219.
- Allen JA, Coombs MM. Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA. Nature 1980, 287, 244-245.
- Backer JM, Weinstein IB. Mitochondrial DNA is a major cellular target for a dihydrodiol-epoxide derivative of benzo(a)pyrene. Science 1980, 209, 297–299.
- Niranjan BG, Bhat NK, Avadhani NG. Preferential attack of mitochondrial DNA by aflatoxin B1 during hepatocarcinogenesis. Science 1982, 215, 73-75.
- Lim LO, Neims AH. Mitochondrial DNA damage by bleomycin. Biochem Pharmacol 1987, 36, 2769–2774.
- Segal-Bendirdjian E, Coulaud D, Roques BP, Le Pecq J-B. Selective loss of mitochondrial DNA after treatment of cells with ditercalinium(NSC335153), an antitumor bis-intercalating agent. Cancer Res 1988, 48, 4982-4992.
- Pedersen PL. Tumor mitochondria and bioenergetics of cancer cells. Prog Exp Tumor Res 1978, 22, 190-279.
- Tapiero H, Sbarbati A, Fourcade A, Cinti S, Lampidis TJ. Effect of verapamil on rhodamine 123 mitochondrial damage in adriamycin resistant cells. *Anticancer Res* 1986, 6, 1073–1076.
- Tuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980, 26, 171-176.

- 14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976, 72, 248-254.
- Maniatis T, Fritsch EF, Sambrook J. Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Laboratory, 1982.
- Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975, 98, 503-517.
- Courtney M, Buchwalder A, Tessier LH, et al. High-level production of biologically active human α₁-antitrypsin in Escherichia coli. Proc Natl Acad Sci USA 1984, 81, 669-673.
 King ME, Godman GC, King DW. Respiratory enzymes and
- King ME, Godman GC, King DW. Respiratory enzymes and mitochondrial morphology of HeLa and L cells treated with chloramphenical and ethidium bromide. J Cell Biol 1972, 53, 127-142.
- Saijo Y, Kumano N, Tokue Y, Satoh K, Oizumi K, Motomiya M. Characterization of resistance to VP-16 in human leukemic cell line. Tohoku J Exp Med 1989, 159, 299-306.
- 20. Wozniak AJ, Ross WE. DNA damage as a basis for 4'-demethylepi-podophyllotoxin-9-(4,6-0-ethylldene-D-glucopyranoside) (etoposide) cytotoxicity. *Cancer Res* 1983, 43, 120-124.
- Glisson BS, Smallwood SE, Ross WE. Characterization of VP-16induced DNA damage in isolated nuclei from L1210 cells. *Biochim Biophys Acta* 1984, 783, 74-79.
- Long BH, Musial ST, Brattain MG. Comparison of cytotoxicity and DNA breakage activity of congeners of podophylotoxin including VP16-213 and VM26: a quantitative structure-activity relationship. *Biochemistry* 1984, 23, 1183-1188.
- Chen GL, Yang L, Rowe TC, Halligan BD, Tewey KM, Liu LF. Nonintercalative antitumor drugs interfere with the breakage-

- reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 1984, 259, 13560–13566.
- 24. Takagi E, Kawatsu H, Shimokata K, Nishiyama Y, Kojima K, Yosida S. Establishment and characterization of resistant cells to etoposide (VP-16) for a mouse breast cancer cell line, FM3A. Jpn J Cancer Res 1988, 79, 938-944.
- Glisson BS, Gupta R, Smallwood-kentro S, Ross W. Characterization of acquired epipodophyllotoxin resistance in a Chinese hamster ovary cell line: Loss of drug-stimulated DNA cleavage activity. Cancer Res 1986, 46, 1934–1938.
- Shinha BK, Haim N, Dusre L, Kerrigan D, Pommier Y. DNA strand breaks produced by etoposide(VP-16,213) in sensitive and resistant human breast tumor cells: implication for the mechanism of action. Cancer Res 1988, 48, 5096-5100.
- Alt FW, Kellems RE, Bertino JR, Schimke RT. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 1978, 253, 1357-1370.
- Melera PW, Lewis JA, Biedler JL, Hession C. Antifolate-resistant Chinese hamster cells. Evidence for dihydrofolate reductase gene amplification among independently derived sublines overproducing different dihydrofolate reductases. J Biol Chem 1980, 255, 7024-7028.
- Glaichenhaus N, Leopold P, Cuzin F. Increased levels of mitochondrial gene expression in rat fibroblast cells immortalized or transformed by viral and cellular oncogenes. EMBO J 1986, 5, 1261-1265.
- Heerdt BG, Halsey HK, Lipkin M, Augenlicht LH. Expression of mitochondrial cytochrome c oxidase in human colonic cell differentiation, transformation, and risk for colonic cancer. Cancer Res 1990, 50, 1596-1600.

Eur J Cancer, Vol. 27, No. 11, pp. 1440-1444, 1991. Printed in Great Britain

0277-5379/91 \$3.00 + 0.00 © 1991 Pergamon Press plc

Serial Serum MCA Measurements in the Follow-up of Breast Cancer Patients

Ofer Merimsky, Moshe Inbar, Mara Hareuveni, Bruria Witenberg, Yoram Wolman and Samario Chaitchik

Mucin-like carcinoma-associated antigen (MCA) was serially assayed in 58 women with histologically proven breast cancer after their treatment for primary disease. MCA sensitivity and specificity were 87.5% and 76.9%, respectively, and the positive predictive value 82.4%. 10 patients had elevated MCA and no evidence of disease (NED) during their follow-up, of whom 4 finally developed overt metastases. The 4 had a mean (S.D.) MCA value of 46.48 (18.26) U/ml during the lead time, versus 18.76 (2.69) U/ml in the other 6, who are still at high risk for developing overt metastases. Raised levels of MCA in patients with NED create a dilemma of "treat" versus "wait and see". Early treatment of patients with serially uprising MCA levels should be evaluated in a prospective randomised study to assess its ability to prevent or delay the development of overt metastatic disease and influence survival.

Eur J Cancer, Vol. 27, No. 11, pp. 1440-1444, 1991.

INTRODUCTION

THE USE of tumour markers for the diagnosis, assessment and follow-up of breast cancer patients has until recently been disappointing. In order to predict early clinical recurrence, a reliable marker of high sensitivity and specificity, which could detect small tumour burdens, is required. The widely used carcinoembryonic antigen (CEA) has been proven to be of little value for predicting clinical recurrence and has successfully

monitored only 60% of patients with metastatic disease during treatment, as the others did not show elevated serum CEA [1].

Mucin-like carcinoma-associated antigen (MCA) is a high molecular weight glycoprotein, produced by oestrogen-dependent and oestrogen-independent mammary carcinoma cells. It is also produced (to a much lesser extent) by several other normal tissues such as breast ducts and renal distal tubules [2]. MCA levels are not elevated in over 95% of patients with localised